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STABILITY ANALYSIS FOR 
ROTATING STALL DYNAMICS 
IN AXIAL FLOW COMPRESSORS* 
Guoxiang Gu, 1 Andrew Sparks, 2 and Calin Belta 1 

Abstract. This paper analyzes the nonlinear phenomenon of rotating stall via the methods 
of projection [Elementary Stability and Bifurcation Theory, G. Iooss and D. D. Joseph, 
Springer-Verlag, 1980] and Lyapunov [J.-H. Fu, Math. Control Signal Systems, 7, 255- 
278, 1994]. A compressor model of Moore and Greitzer is adopted in which rotating stall 
dynamics are associated with Hopf bifurcations. Local stability for each pair of the critical 
modes is studied and characterized. It is shown that local stability of individual pairs of 
the critical modes determines collectively local stability of the compressor model. Explicit 
conditions are obtained for local stability of rotating stall which offer new insight into the 
design, and active control of axial flow compressors. 

1. Introduct ion 

Axial flow compressors are vital parts of  the aeroengines. Yet two distinct aerody- 
namic instabilities, rotating stall and surge, can severely limit compressor perfor- 
mance. Both of  these instabilities are disruptions of  the normal operating condition, 
which is designed for steady and axisymmetric flow. Rotating stall is a severely 
nonaxisymmetric distribution of  axial flow velocity around the annulus of  the 
compressor, taking the form of  a wave or stall cell that propagates steadily in the 
circumferential direction. Surge, on the other hand, is an axisymmetric oscillation 
of  the mass flow along the axial length of  the compressor. Both of  these disruptions 
can have catastrophic consequences for jet airplanes. 
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The nonlinear phenomena of rotating stall and surge have been studied exten- 
sively in the literature in which a PDE (partial differential equation) model of 
Moore and Greitzer [10] becomes standard. In this PDE model, rotating stall dy- 
namics are described by a PDE, and surge is described by two ODEs (ordinary 
differential equations). If only the fundamental harmonics in a spatial Fourier se- 
ries of the disturbance flow is retained, the PDE model reduces to a third-order 
ODE model. The bifurcation phenomena associated with rotating stall and surge 
for this model are analyzed thoroughly in [2], [9]. 

Because the approximation error is due to the truncation of high-order harmon- 
ics in the disturbance flow, this paper will focus on stability analysis for rotating 
stall dynamics. The original PDE model of [10] will be investigated indirectly 
through transformation into an ODE model of order 2N + 2, where N ~ o~ is 
the number of pairs of stall modes. This multimode model (N > 1) gives much 
more accurate representation and recovers the PDE model when N ~ oo. The 
equilibria of the uniform flow will be derived, and the rotating stall dynamics will 
be characterized for the mulfimode model. The local stability of the compressor 
model will be studied via both the methods of projection [7] and Lyapunov [3], 
for which necessary and sufficient conditions are obtained in terms of various 
compressor parameters. 

Our results show that the stability condition for each pair of the critical modes 
determines the stability for rotating stall collectively. We point out that although 
in a special case our stability condition for rotating stall dynamics is the same as 
that for the simple third-order ODE model, stability analysis for the third-order 
ODE model cannot replace that for the PDE or for the multimode model. In fact, 
active control for rotating stall based on the third-order ODE model often fails to 
stabilize the critical operating point of the PDE model because of the neglected 
high-order harmonics in the disturbance flow. 

Interested readers are referred to [4] for a more complete reference on stability 
and stabilization of the rotating stall dynamics for the third-order Moore-Greitzer 
model. Our stability analysis for the multimode model with N --~ oo and the 
explicit conditions for local stability of rotating stall offer new insight into the 
design, and active control for axial flow compressors. 

A schematic axial flow compressor is shown in Figure 1. The following notation 
is used in this paper: 

R = mean  rotor  radius  Ic = 11 + l~. + ~/a 

Ao = compressor  duct  area  V e = volume of  p lenum 

U =  blade speed at mean  radius /z = viscosi ty coefficient 

as = speed o f  sound Ps = static pressure in p lenum 

= ( U / 2 a s ) ~ p / ( A c L c )  PT = total pressure B ahead  o f  entrance 

W = semiwidth  o f  cubic  characteris t ic  and  fol lowing the throttle duct  

a ,  b = t ime lag of  blade passage  ~ = (Ps - P* ) /P Uz: pressure rise 



n - ~ .  

y =  

m ~  

Ig, 11, IT = 

seralheight of cubic characteristic 

throttle position 

exit duct length factor 

length of exit, entrance, throttle 

ducts, in wheel radius 

ROTATING STALL DYNAMICS 333 

~b = local flow coefficient at station 0 

= mean flow coefficient at station 0 

~o = disturbance flow at 

= axial distance from station 0 

= U t / R  where t is time 

p~ 
~ ~)(0,~) ~ Throttle 7 J 

- Ac AIII  _ ; s  "PT 
/t" IGV "--/ 0 1 /  E ) ~ A  j . .  ~ 

/ v  k 
Compressor c__ Plenum Vp 

Figure 1. Schematic of compressor showing nondimensionalized lengths. 

2. Multimode Moore-Greitzer model 

A post-stall model for compression systems was developed by Moore and Greitzero 
Its full PDE form is described by [10] 

ko + lc ct~ = ~Pc(d~) - m do 

/ ]  a~ l a~o 02~~ , (1) 
- ~ , a - ~  + bOO /z O-0g ] b=0 

4BZlc 

where 4, =  9 + ~%=0 is the local mass flow at station 0. The incompressible 
and irotational assumption on the gas flow implies the existence of a disturbance 
flow potential that satisfies Laplace's equation with zero boundary condition at 
0 = --lF <_ --lc, which in turn implies that the disturbance flow at station 0 has 
the form: 

N 
~%=o = E (An cos(n0) + Bn sin(n0)), N --+ c~. (3) 

n=l 

Let  {e ion 2N }n=0 be a set of  2N + 1 uniformly distributed samples on the unit 
circle. Denote 

~TN = [~(01) ~(02) - . .  q~(02N+l) l , (4) 
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i__ l_L ! 
45 4i ~ 4~ 

COS 01 COS 02 . .  ~ COS 02N+1 
sin 01 sin 02 . .. sin 02N+1 

, . , , 

cosNO1 cosN02 , , .  cosNO2N+1 
sinN01 sinN02 ... sinNO2N+1 

E =- diag(lc, m112, mzlz . . . . .  mNI2), 
mcosh(nlF) 1 [~ 01 

m n - -  - -  [2 nsinh(nly)  + -'a = 1 ' 

F = diag 

M1 = T'r E-I FT M2 = TT E-1T. 

(5) 

(6) 

(7) 

(9) 

Then the full PDE model can be approximated by the following multimode Moore- 
Greitzer model [8]: 

~N = MlqbN + M2~tc(A~N) -- M2en~, A~ N = ~...~N _ eN, (I0) W 

_ 1 ( eTCN y~ / -~ )  ~T = [1 1 . ' .  1 ] .  (11) 
4B2l-----c \ 2"~"+ 1 , 

This multimode model converges to the PDE model described in (1) and (2) uni- 
formly as N ~ oo under some rather mild assumptions. Note that T -1 = T T, 
and 

~N T~N = eN~'-2-N + 1, TT eN = ~ ,  (12) 

and e T = [ 1 0 . . .  0 ]. The performance characteristic curve ~Pc(') is assumed 
to be a cubic polynomial [10] and is given by 

H [coeN +Clq~U + C3r (13) ~ACN) 

where #2  = x.k ik=2 = x . x denotes a Hadamard product [5], where x "k raises 
each element of  x to the power of k. The uniform flow can be represented by 
r = r where r is the intensity of the flow rate. 

Suppose that the flow is perturbed near the equilibria of the uniform flow. Then 

d/)N -~- ~)e?-N + 6~bN, &r = ~ 6 0 N  + -- 1 ~N, (14) 

where ~be # 0 is a scalar factor, representing the flow rate intensity. It follows that 

~ N  = MI + M2H + ~ - 1  3qbN 

3Hc3 ( ~  ) Hc3, ~..3 + - 1 M28r + --ff-rl,,2o,pN 
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( I ( - ~ )  ( t ~ e ) 3 ] )  + Mlq~e+M2H co+cl - 1  +c3 " ~ - 1  eN--M2~NW. 

(15) 

Proposition 2.1. The steady equilibria (r W) = (r We)for the multimode 
compressor model of ( l O) and (11) are dependent on the throttle position parameter 
V and are governed by 

W e = H  c 0 + c l  - 1  +c3  - 1  = y---~. (16) 

Proof. Consider the perturbed multimode model for ~b~v = q)eeN + 3q~N. Then 
8dpN = 0 is an equilibrium if and only if there exists a real We such that 

M l C e +  M 2 H  co + Cl - 1 + c3 - 1 eN --  M 2 e N W e  = O. 

(17) 
Denote Ik as the identity matrix of size k. Substituting the expressions of M1 and 
M2 gives 

T T E - I ( F d p e + H I c o - F c I ( ~ - I  ) 

+c3 -- 1 I22v+1 -- WeI2N+I eN = 0. (18) 

Because the (1-1)-position of F is zero, this equation is equivalent to the first 
equality in (16). By setting ~ = 0, the equilibrium point We has to satisfy an 
additional condition, 

~T y V/~-e = N - q._iCeeN = Ce, (19) 2N 

which is equivalent to the second equality of (16). Hence (16) characterizes the 
equilibria of the compressor model. [] 

Proposition 2.1 indicates that the equilibria of the multimode model are func- 
tions of V, the throttle parameter, which can in turn be determined by the equilibria 
as in (19). Equation (19) is also referred to as the throttle curve as shown in Figure 2 
(the dashed lines A-B and C-D for two different g values). 

Denote the state variable as x = S~N @ 8W where ~ denotes the direct sum 
and 8W = W - We. A local model around the equilibria (dPe~N, We) has the form 

Jc = f ( y , x )  = Lx + Q[x,x] + C[x,x,x] + . . . ,  (20) 
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where 

L=s_I[ ~ xe~ ] 
--XeN E_l/2( F + oti)E_l/2 S, (2t)  

Q[x, x] = ~ w~ x 2, (22) 
02TN+I r 4~e r" Hca ~Ar ] 

C[x, x,  x] ~-- I ~ l v 1 2  02N+l J x.3 (23) 
L 02N+1 

In the preceding expressions, 

S = [  Eu2TO 2B~/(2N + l)lc ' (24) 

1 V 
x = - ~ c '  r = 8B2lcVr~e, (25) 

"~ Cl + 3c3 - 1 . (26) 

By the form of eN, the linear matrix can be written as 

L = S -1DS,  D = diag(D0, D 1 , - . . , D N ) ,  (27) 

m~ 1 , Do (28) 
L - K  ~/lc ' n/b o~ - ~ n Z J  

for 1 < n < N. Because S is a matrix of similarity transformation, an eigenvalue 
L of L satisfies 

det [)~ - z - r e  T ] 
KeN LI - E -U2(F  + oll)E -1/2 = O. 

Proposition 2.2. Consider the compressor model of ( lO) and (11). Its linearized 
system near (~beeN, qJ e) as in (16) has (N + 1) pairs of eigenvalues that are given 
as follows: 

~q,2 = 0.5(r  + ~/lc) 4- O.5j~r~jc 2 + r~/Ic) - ( r  + ot/lc) 2, (29) ( n) 
~.2n+l,Zn+2 = o~ - ~ n  2 + j -~ m 2 1 ,  (30) 

where n = 1, 2 . . . . .  N, and j = ~-2-f. 

Proof. Careful observation of SLS -1 with L and S as given in (21) yields 

D = SLS  -1 = diag(Do, D1 . . . . .  DN), Do = ot/lc ' (31) 

D n = I  ~  - n / b  ]m-1  ' n /b  ~ _ / z n  2 n n = 1, 2, . . . ,  N. (32) 
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Direct calculation for the eigenvalues of L gives 
N 

det(~.I - L) = det(LI - D) = H det(~.I - Dn) = O, 
n----O 

,'. ~- det()~I - Do) = L 2 - (r +ct/Ic))~ + x  2 + rot/Ic = O, 

det(LI - Dn) ---- (mn L - ct + #n2) 2 -q- n2 / b  2 = O. 

Hence the expressions for 2(N + 1) eigenvalues of L are those shown in (29) 
and (30). [] 

i , 
. A  i,'" 

. ' "  :' 7 

7 = y c  . - - ""  . . . . . .  J'" ....... ~>~ 

0 2W 
Figure 2. Schematic compressor characteristic, showing rotating stall. 

Let us first examine the performance curve q/c(') for the special case of/z = 0. 
See the A-D curve in Figure 2, where the dashed lines are the throttle curve 
tile 2 2 = ~b e / y  , whose intersection with q/c(') determines the operating point. The 
maximum pressure rise takes place at ot = 0 (point A), where the derivative of 
q/c(') equals zero. Because ot < 0 on the right side of the maximum pressure rise, 
the N pairs of eigenvalues of the L matrix as given in (30) are stable. By r < 0 
the pair of eigenvalues of (29) are also stable. Hence the compressor model is 
locally stable at the right of point A, and the axisymmetric flow q~N = qbeeN is a 
stable equilibrium. However, if the throttle value y decreases, then the flow rate 
intensity ~be decreases, and the derivative of q/c(') eventually becomes positive. 
Thus the compressor model is unstable at the left of point A. In this case the N 
pairs of eigenvalues in (30) cross the imaginary axis simultaneously. This is called 
the critical case, for which Hopf bifurcations occur that induce rotating stall. For 
N = 1, the compressor operates along the stall curve q/s('), as shown in the 
B-C branch of Figure 2 which is locally stable. If the underlying bifurcations are 
subcritical, or unstable, the A-C portion of the stall curve is unstable. Stall cells 
will be born at point A and will grow, which will throttle the operating point from 
A to B quickly. There is a tremendous drop in both the pressure rise and the flow 
rate. Moreover, increasing the throttle position and flow rate at point B does not 
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increase the pressure rise. Rather, the pressure rise becomes even lower before it 
reaches point C, at which it jumps back to (again because of loss of stability) the 
performance curve ~c ('). The hysteresis loop A-B-C-D is the main cause of loss of 
compressor performance and potential damage to aeroengines. On the other hand, 
if the underlying bifurcations are stable, or supercritical, then point A represents 
a stable equilibrium. Decreasing the flow rate will not throttle the operating point 
to B. For N = 1, the pressure rise will gradually decrease along the curve A-C 
(which will be above the throttle line at ~, = Yc) and can thus be easily reversed by 
increasing the throttle position. Hence the stability of the Hopf bifurcation plays 
an important role in analyzing the stability of the rotating stall dynamics. 

For the case/z > 0, the critical value of the flow rate intensity ~be takes place 
on the left of the maximum pressure rise because the viscosity coefficient/x tends 
to damp out the flow instability, thus delaying the occurrence of rotating stall. 
A further decrease in the flow rate intensity will also cause instability of the 
pair of eigenvalues in (29) that corresponds to surge dynamics. The next result 
characterizes the critical throttle parameter corresponding to rotating stall. 

Corollary 2.3. Suppose that c1 + 3c3 = 0 for the performance characteristic 
curve ~c('), and IX = O. Then the N pairs of eigenvaIues as in (30) cross the 
imaginary axis at the same critical throttle parameter value 

~b e 2W 2W (33) 

and  ~.2n+l ,2n+2 = -}-j "~ m n  1 for 1 < n < N. For Ix > O, the N pairs of eigenvatues 
as in (30) cross the imaginary axis at N different critical throttle parameter values 
that are given by 

Hco+Hc,%/I+~+He3 -t- 3Hc3) J 

and expression ~2n+l,2n+2 = :tz j ~ mn ~ remains the same for n = 1, 2 . . . . .  N. 

Proof. Because cl + 3C3 ----- 0, ~be = 2W is the critical flow rate intensity if p = 0. 
Substituting into (16) and (19) yields the critical throttle parameter value as in (33). 
For/z # 0, the nth pair of eigenvalues cross the imaginary axis at oe = / z n  z, or 

~11 l~nZ W q)e I = + ~ (35) 
W 3Hc3 

Substituting into (16) yields the critical throttle parameter value as in (34). [] 
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For lz > 0, the largest N value such that Yc, is real for n = 1, 2, . . . ,  N is 
bounded as N < ~/ -3c3H/( lzW) .  This is the same as in [2]. 3 For/z = 0, the 
largest N value can be unbounded. Moreover the critical values of Ce and q~e under 
the condition of ci + 3c3 = 0 are given by 

r = 2W, q& = H(co + cl + c3). (36) 

3. Stability analysis for rotating stall 

This section considers rotating stall dynamics with N pairs of critical modes cor- 
responding to N harmonics of spatial Fourier series for the local flow rate. Local 
stability for each pair of the critical modes will be analyzed first using the projec- 
tion method [7], [6] (as outlined in the Appendix). It is known that even if every 
pair of critical modes corresponding to the rotating stall is stable, the rotating stall 
dynamics still may not be stable because of the coupling of different pairs of crit- 
ical modes. Hence the Lyapunov method of Fu [3] (as outlined in the Appendix) 
will be adopted to analyze further the local stability of the rotating stall. It will be 
demonstrated that for the case of/z = 0, local stability of each pair of the critical 
modes implies local stability of the rotating stall dynamics. 

From Section 2, a local model of the multimode Moore-Greitzer model has the 
form in (20), where linear, quadratic, and cubic terms are given as in (21) through 
(23). In order to apply the projection and the Lyapunov method, left and right 
critical eigenvectors corresponding to the rotating stall must be computed. Denote 
On as a column vector of size 2N + 1 as 

On = [ e -jn01 e -in02 . . .  e-jnO2t~+l ]r , (37) 

where the e jOk's are equally distributed on the unit circle as assumed. 

Lemma 3.1. The right and left eigenvectors corresponding to the nth pair of the 
critical eigenvalues associated with rotating stall are given by 

/ 2 m n  1 [ ( ~ t ]  ~ u T [  1 I [ o H  0] 
r n = V ~ [ 1  j]Un ' ,  e n = V 2 N + l n  - j  

( 38 )  
respectively, for 1 < n < N, where Un is an arbitrary nonzero column vector of  
size 2. Moreover, e , r .  = 1 if and only /f llunll = V ~ U n  = 1/~/~. 

Proos See the Appendix. [] 

3Actually the/z parameter in [2] is different from what we used here. Taking tL ~ /~/(2a) will 
then give exactly the same expression as in [2]. 
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With rn as in Lemma 3.1, (rn " rn = rn2), (rn " rn) = lrnl "2, and (rn . rn  9 rn) are 
given by 

[ ~ ]  2mn] ~ ,  8 n = t a n _  1 Un2 , Un "~ 

\ U n l  2' L u=2 
(39) 

~n~ [~:] ~ [~n] pnrn (40) Irnt "2 = "~- , rn " rn " rn = ~ e iS" = " - ~  

To determine the stability of the nth pair of the critical modes corresponding to 
rotating stall, column vectors/Zn and Vn as defined in (75) must be computed, It is 
noted that 

SQo[rn,  rn] = - -~ [ E1 /2T  

o~+~ ~ .  J 

- 2W2 LE-1/2TJ~N 
~ ~(~ 0 ~ 

(4~) 
By SQo[rn,  Yn] = - 2 D S l z n  with y = Yc, 

. . -  T~V--TS- ~ [e ~ 
_ 3.c~z~ V--r-~/~-;v (_~_ a) FL2B~02N+I TTE-oI/2eN ] DfflL1 jI-07 

3 H c 3 P 2 n ( ~ - I ) [  02N+1 ~v ] Do~ [~ ] (42) 
- -  4W2Ic L ~BB " 

Using the expression for Do, we obtain 

I:~ ~]  -~ ' [~':~ -:] 
DO1 = or~It = r 2 + o t z / l c  , ot = 0. (43) 

It follows that 3~c~ ( ~ ) [ ~ I  
IZn = - 4 W 2 ( x 2 1 c  + otr) - 1 ~.~ j ,  ot = 0. (44) 

The computation of the vector vn, which is more complicated, is summarized 
in the next result. 
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L e m m a  3.2. The vector Vn as defined in (75) forfthe local multimode model is 
given by 

where 1 < n < N /2, and O~2n = (o~ - / z ( 2 n )  2) m2-n 1. For N < 2n <_ 2N, vn has 
the same expression as in (45) except that 2n is replaced by r/ = 2(N - n) + 1, 
and | by |  

Proof.  See the Appendix. 

The next result gives the stability condition for each projected dynamics along 
the nth pair of  the critical eigenvectors. 

T h e o r e m  3.3. For 0 < 2n < N, the stability characteristic value (SCV) for  the 
nth pair  o f  critical modes corresponding to rotating stall is given by 

= mnW4 _I_ _ 1)  2 n:T/c'~--~lr ]3  2 (46) 

g2~,n 3Hc3 Og2nO)2n + ~ + 2~176 (47) 
a) = 2 2' m2n (0)2n - 4COn z + 0t2n )2 + 40g2nO) n 

where o) n -~m n . For N < 2n <_ 2N, ~n) is the same as in (46) except that 2n 
is replaced by t / =  2(N - n) + 1. 

Proof. It is straightforward to obtain 

ena[x ,  y] = ~ - 1 e,,(x . y ) ,  (48) 

Hc3 ~ . 
s y, z] = m - - - ~ n t x  " y " z). (49) 

With/zn and vn obtained as in (44) and (45), we have 

3Hc3rp2rn ( ~  ) 
rn " #n = 4W2(x21c + ~r)  - 1  , (50) 

3Hc3 (~ 4~ "-}- ~ ~0/2n J P2(~176176 ( ~ )  ?n " Vn = ~ " 4W2"-7-r-7 "---v'---"--s - 1 . (51) 

If 2n > N, 2n should be replaced by - r / =  - ( 2 N  + 1 - 2n) in (51). Now 

Re [gn(rn  9 = 4WZ(x2lc + olr) - 1 , 

Re [gn(rn ' rn " rn)] = p-'~ (52) 
2 '  
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Re[e , ( i ,   9 v,)] = 3~~ Hc3Pn - 1 (53) 
4m2n W 2 

f~,n = I m  [Co~---~-n~ ~ . (54~, 

Hence the expression for L(2 n) in (46) can be verified following (76). 

As mentioned earlier, ~.~n) < 0 for n --- 1, 2 . . . . .  N may not imply stability of 
the rotating stall dynamics because of the coupling between different pairs of the 
critical modes. However for the special case of/z = 0 (that is, when N pairs of 
the critical modes in (30) cross the imaginary axis simultaneously), ~n) < 0 for 
n = 1, 2 . . . . .  N determines the stability of the rotating stall dynamics, which is 
surprising. The next lemma gives the expressions of/znz and Vnt as in (79), which 
will be useful in establishing the final result of our paper. The derivations of/~n~ 
and vn~ are similar to those of/zn and vn, so the proof is omitted. 

Lemma 3.4. Suppose that lz = O. Then the vectors IZnt and un~ as defined in (79) 
for  the local compression model are given by 

3Hc3PnPt jeJ( 'n- ' t )  (--~ - 1) [ O ;  -1 ] (55) 
[zm = 4mln-ll W2(coln-ll - con q- C~ 

4mn~7~-"~n~-3He3PnPljeJ(Sn+'l) COl) (- '~ -- 1) I O  1 2 '  , o < n + i  < N ,  

4 ~ - ~ _ ~ n n ~ - ~ / )  -- 1 -n , N < n + e < 2N, 
(56) 

where n, l = 1, 2 . . . . .  N, n ~ l, ~ = 2N + 1 - n - l, qbc is as in (36), and | is 
as in (3 7). 

Theorem 3.5. Under the conditions Iz = O, c3 < O, and cl q- 3c3 = O, the 
rotating stall dynamics are locally stable if  and only if  co + 10c3 > 0. 

P r o o f .  Local stability of rotating stall implies that each pair of the corresponding 
critical modes is locally stable, which implies that ~.~n) < 0 for n = 1, 2 . . . . .  N. 
Because ~bc = 2W,/x = 0, and ot = 0 at the criticality, ~2n = 0 for 1 < n < N. It 
follows that for n = 1, 2 . . . . .  N, ~n) < 0 is equivalent to 

W3 Wick 2 < 0. (57) 

Because c3 < 0 and all other parameters are positive, this relation is equivalent to 
1 3H~c3 

- -  > 0 .  ( 5 8 )  
4 Wlc K2 
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Noting that the expression of r at criticality becomes 

W 
r = 4 B 2 H l c ( c o  q- Cl -b c3) '  (59) 

straightforward calculation proves that ~.~n) < 0 is equivalent to co + 10c3 > 0. 
For sufficiency, assume that co + 10c3 > 0, which is equivalent to ~n) < 0 for 

n = 1, 2 . . . . .  N.  It will be shown using Theorem 5.3 that the compressor model 
is locally stable at uniform flow equilibrium q~e = ~bc, and 7re = ~c with y = Yc. 
Indeed there holds Xnn = 8~-~ n) < 0 for n = 1, 2 . . . . .  N. Furthermore, through 
straightforward calculations, 

2 2 
 9 mnPnPl  : 2 N  en(f t  . vn,) = Jr~-- - - - - - f f~ t  + 1), (60) 

2 2 
"r mnPnPl  (2N e n ( r l  " lZnl)  = J t z - ' - ' - ' - f f ~  -~ 1), (61) 

for n ,~ l where rtz, rv are real numbers. Thus 

Re [en(rt. tZn~)] = Re [en(Yt.  Vnl)] = 0 (62) 

for n, l = 1, 2 . . . . .  N. It follows that 

Xnz = 16Re ~ ,Q[rn ,  #l]  + ~ n C [ r n ,  rl, Pl] (63) 

at y = Yc. Using the expression of  rn, and ~c = 2 W ,  

3Hc3~:P2 
rn " tzt = ~ r n ,  rn . rI . ?l = rn. (64) 

By (48), (49), and relation enrn = 1, 

r. ( 3 H c 3 p i ~  2 H c 3 p ~  
g.nQ[rn, lZl] = mnlc ~ 2W2K ,] ' s "r l"  ?l] = 2mnW'----'- ~ .  (65) 

The expression of  Xnl is then obtained as 

)Cnl "~" mn W ~ w-w--~cX2 ] .  (66) 

Again, because c3 < 0 and all other parameters are positive, Xnt < 0 is equivalent 
to 

1 3 H r c 3  
> 0, (67) 2 WlcK z -- 

which is implied by (58). Hence the bifurcated system is locally stable in light of  
Theorem 5.3. [] 

It is very surprising to see that the stability condition for rotating stall is identical 
to the case of  N = 1 for the third-order Moore-Greitzer model [9]. However, it 
should be noted that the result of  Theorem 5.3 is derived based on assumptions 
that /z  = 0, and ~Pc(') is cubic satisfying c3 < 0 and Cl q" 3C3 = 0 as in [10], [9]. 
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4. Conclusion 

Rotating stall dynamics were investigated in this paper for axial flow compres- 
sors, and necessary and suff• conditions were obtained for local stability of the 
rotating stall dynamics in terms of various compressor parameters. Although our 
stability conditions were derived for the multimode Moore-Greitzer model, they 
hold for the limiting case, i.e., the full PDE Moore-Greitzer model. This result is 
important because past research has almost exclusively focused on the third-order 
Moore-Greitzer model (N = 1), of which many active control laws were proved 
to be effective in the literature but fail to work in engineering practice because 
of the spillover of the high-order modes [4]. Our local stability conditions clearly 
offer new insight into the design and active control of rotating stall for the mul- 
timode Moore-Greitzer model, thereby improving the performance of axial flow 
compressors. 

5. Appendix 

This section reviews briefly the projection and Lyapunov methods for local 
stability analysis of Hopf bifurcations and gives some of the proofs for Section 3. 

For stability analysis of Hopf bifurcations, the system under consideration is 
the following nth-order parameterized nonlinear system: 

2 = f ( y , x ) ,  f ( y ,  0 ) = 0  V y ~ R  and x o C S C R  n, (68) 

where x ~ R n, y is a real-valued parameter, and S is a linear subspace of R n, 
to be clarified later. It is assumed that f(-,  .) is sufficiently smooth such that the 
equilibrium solution Xe, satisfying f ( y ,  Xe) = 0, is a smooth function of y. The 
smoothness of f ( . ,  .) implies the existence of a Taylor series expansion near the 
origin of R n in the form 

2 = f ( y ,  x) = L(y )x  + Q(y)[x, x] + C(y)[x, x, x] + - . . ,  (69) 

where L(~,)x, Q(g)[x, x], and C(t,)[x, x, x] can be expanded into 

L(y )x  = Lox + 8 y L l x  + •y2L2x - .k . . . ,  (70) 
Q(y)[x ,x]  = Qo[x, x] + 8yQl[X,X] + . - . ,  (71) 

C(y)[x, x, x] = Co[x, x, x] + 8yCl[x, x, x] + . . . ,  (72) 

with ~y = y - Yc, and Lo, Lb  Lz constant matrices of size (n x n). Suppose that 
L(y)  possesses m (< n/2) pairs of complex eigenvalues Lk(y) = 0tk(y)~j/3k(y), 
dependent smoothly on y. It is assumed that for 1 < k < m, 

dOlk . , 
oek(?'c) = 0, /~(~/c) = o)k # 0, ~k(Yc) = --~-y ~Yc) # 0, (73) 

while all other eigenvalues of L(y)  are stable at and in a neighborhood of y = ?'c. 
That is, m pairs of eigenvalues cross the imaginary axis simultaneously. Then each 
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Lk(y) is a critical eigenvalue, and so is its conjugate. The center space, or the 
eigenspace, for the m pairs of critical eigenvalues is denoted by Sc, and is assumed 
to be orthogonally complementary to ,S in the sense that S@Sc = R n. Because the 
projection ofxo c S to $c is zero, the equilibrium x0 satisfying (68) will be called 
the zero solution. The strict crossing assumption implies that the zero solution 
changes its stability as ~, crosses ~'c. For instance, odk(yc ) > 0 implies that the 
zero solution is locally stable for y < Yc and becomes unstable for y > Yc. The 
crucial problem is the determination of local stability near the critical parameter 
~'c at which Hopf bifurcations occur and the periodic solutions are born. 

A. 1. The projection method. 

The center space Sc, spanned by all the critical eigenvectors, is complete. If all the 
critical eigenvalues are distinct, then 

Sc = Sc~ @ Sc2 ~ " o  9 Sc~, (74) 

where Sck denotes the eigenspace spanned by the kth pair of the critical eigen- 
vectors. The projection method in [7] projects the nonlinear dynamics into the 
subspace of $ck so that stability of the projected dynamics can be analyzed. Asso- 
ciated with each pair of the critical eigenvalues (.k k, ~k), there can define an SCV 

: (~) whose sign determines local stability of the (stability characteristic value) ~z 
projected dynamics. See [7], [6], [1] for details. Let the Taylor series of f ( y ,  x) 

: (k) is now be of the form in (69), where Lo = L(0). An algorithm to compute ~2 
outlined. 

Step 1. Compute the left row eigenvector s and the right column eigenvec- 
tor rk of L0 corresponding to the kth critical eigenvalue of Zk(0) = j~ok. 
Normalize by setting ekrk = 1. 
Step 2. Solve column vectors #k and Vk from the equations 

1 1 
-L0/zk = ~Qo[rk, rk], (2jwkI --Lo)vk = ~Qo[rk, rk]. (75) 

Step 3. The coefficient 2~k) is given by 

{ 3 } 
X~ k) = 2Re 2~kQo[rk, ~k] + s vk] + ~g-kCo[rk, rk, rk] - (76) 

Theorem 5.1. Suppose that Lo has N pairs of nonzero critical eigenvalues on 
the imaginary axis with the rest on the open left half-plane. Then the projected 
dynamics along the kth pair of the eigenvectors is stable if ~2 < O, and unstable 
if X2 > O. For the case of N = 1, the associated Hopf bifurcation is supercritical 
or stable if ~2 < O, and subcritical or unstable if Xz > O. 
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It should be clear that if Lo admits only a single pair of imaginary eigenvalues, 
then local stability of the bifurcated system is equivalent to ~k) < 0. HoweveL 
if Lo admits more than one pair of imaginary eigenvalues, local stability of each 
projected dynamics does not guarantee local stability of the bifurcated systems. In 
this case, local stability of the bifurcated systems can be tackled by the Lyapunov 
method [3]. 

A.2. The Lyapunov method. 

The Lyapunov method for multiple critical modes has been developed by Fu [3]. 
The method gives sufficient conditions on the existence of the Lyapunov function to 
guarantee local stability of the bifurcated system. The following notion is needed. 

Definition 5.2. Under the condition that Lo admits N > ! pairs ofeigenvalues on 
the imaginary axis with the rest on the open left half-plane, the nonlinear system 
(69) is said to be locally center-symmetric in the sense of Lyapunov if the following 
conditions hold: 
(oi ~Z~ O)m, O)i # 2(ore wi ~ 3O9m whenever N > 2, 
~i r OOrn + (ok, o9i ~ 2(ore + cote, 2wi ~ Wm + Wk, whenever N > 3, 
(oi • (om "q'- (Oh "-[- COl, (-Oi + Wm # (oh + ( o r ,  whenever N > 4, 

hold where all indices are distinct. 

Theorem 5.3. Suppose that Lo admits N > 1 pairs of eigenvalues on the imagi- 
nary axis with the rest on the open left half-plane, and the nonlinear system (69) is 
locally center-symmetric in the sense of Lyapunov. Then there exists a Lyapunov 
function that guarantees local stability of(69) at the criticality if 

I( )1 Xkk = 16Re gk 2Qo[rk, Nk] + Qo[~, vk] + ~Co[rk, rk, rk] < 0, 

for k =  1 , . . - ,N ,  (77) 

Xkp= 16Re { gk (Qo[rk,/Zp] + Qo[~p, Vlq,] + Qo[rp, IZl~] + 3Co[rk, rp, ~p])} < 0 ,  

(78) 

for k, p = 1 . . . . .  N with k # p, where P~k, vk are the solutions to (75), and tZkp, 
vk e are given by 

1 
Itkp = - ~ ( L o  - j ((ok -- (op))-I Oo[rk, Fp], 

1 
vkp = --~(Lo - j((ok + (op))-1Qo[rk, rp]. (79) 
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It is noted that Xkk = 8~-2 (k). Hence local stability of Hopf bifurcations with 
multiple pairs of critical modes requires more than local stability of each pro- 
jected dynamics. Roughly speaking, the nonpositivity of X~p with k # p takes the 
coupling of different pairs of critical modes into account for local stability of the 
bifurcated system in (69). 

A.3. Proof of  Lemma 3.1. 

Note that D = SLS  -1 as in (27). If ro is an eigenvector of D, then S- l rD is an 
eigenvector of L. Let the nth eigenvector of D be denoted by Xn + jYn where Xn 
and Yn are real vectors of size 2(N + 1) corresponding to the eigenvalue of j0)n 
at y = Yc where COn = n/(bmn) > 0 for n = 1, 2 . . . . .  N. By equating real and 
imaginary parts of the eigenequation for D, the two equations 

Dxn = -COnYn, Dyn = COnXn, (80) 

are obtained. This yields the eigenequations 

0) 2 D2xn 2 D2yn - nYn. (81) -COn xn ~ 

Hence Xn and Yn satisfy the same eigenequation. We need to solve only one of 
them; the other can be obtained from either Dxn = -0)nYn or Dyn = COnXn. At 
Y = Y c ,  

2 D 2 = diag(D~, D12 . . . . .  D2N), Dn 2 = -COnI2, n = 1, 2 . . . . .  N.  (82) 

Thus it follows that the (2 x 2) matrix Dn at the (n + 1)th diagonal block of D 2 
is canceled in the sum of D 2 4- wE I. Because (D 2 - 0)2I)x n = 0, and det(D 2) = 
(to 2 + rot/Ic) 2 # 0, Xn has the form 

Xn = [02n U T 02(N-n) ]T, 02g C R 2k, (83) 

where Un is an arbitrary nonzero real column vector of size 2. Now Yn can be 
calculated as 

1 1 
yn = - - - D x n  = - - -  [02n (Dnun) T 02(N-n) IT = [02n V T 02(N-n) ]T. COn COn 

(84) 
The right eigenvector rn corresponding to the eigenvalue jCOn is thus given by 

F 0en 1 [ ?  10] 
r n = S - l ( X n + j y n ) = S  - ~ [ u n + j v n ] ,  Vn= Un, (85) 

L 02(~-n) A 1 

for n = 1, 2 . . . . .  N. The relation between Un and vn implies that 

u n + j V n = J u n ,  j = [  1.__j ~ ] = I . . _ l j ] [ 1  j ] ,  (86) 
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where n = 1, 2 . . . . .  N. It is now clear that 

02N+l 
r n =  ( 2 B ~  l~c)_ 1 

cos nO1 
_- ,/2mr 7- 1 

V 2 N + I  cosn0zN+l 
0 

TTE_U2-][ 02n ] 
o N+I J u. + iv.  

02(N-n-l) 

sin.n01 I 
(un + jvn), 

sin nO(2N+l) 
0 

(87) 

which becomes the same as (38) by substituting the expression of Un + jvn as in 
(86). Next denote s as the left eigenvector of D. Because of the block structure 
of D and Dn = - D r  at y = Yc for n = 1, 2 . . . . .  N, s = r~. Hence 

~I [ TT ET 02N+l ] = rffmn, (88) ~.n = ~'D S = ras = rHnSI-Is = rn T 4B21c(2N + 1) 02N+1 
which gives the expression of en. The normalization condition enrn = 1 yields 

g.nrn = m n r ~ r n  = 2liunH 2 = 1, (89) 

which is equivalent to tlun I1 = 1/~/2.  The proof is now complete. 

A. 4. Proof of Lemma 3.2. 

By definition in (75), 

vn = ~(2jOgn -- L0) -1Qo[rn, rn] = s-l(2jWn - D)-ISQo[rn, rn] 

2 [3~__~.~(~_I) TTE-1T 0 2 N + 1 ] [ ~  qeJ2~" = P_~_.nS-l(2jw n _ D)-IS w~ n 
4 02ru+x ~ A 4q% 

(90) 

There are two cases to consider: 

(i) 2n < N 
(ii) N < 2n < 2N. 

--3Hc3p2eJ2~"4m2n W 2 ( ~ - 1 )  

For (i), 

3 C3  CJ2'n4m2nW2 S l 2j n 

cos(2n01) sin(2n01) 
 9 . 

cos( 2nO2iv + l ) 
0 

7 

sin(2n0zN+l) I 
O 
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X ( 2 j C o n - D 2 n ) - l [  l_.j]. 

At the critical parameter  7 = 7c, 

Dn=IO -con] n -1 
con 0 , ~On = - { r a n   9 

(91) 

(92) 

Then  straightforward computa t ion  gives 

[1] 
O)2n -- 4o) n -t- Ol2n -- 2OL2nO)nJ 

Hence  for n < N/2 ,  direct computa t ion  gives the expression in (45). 
For  (ii), without  loss of  generality, it is assumed that 0h = 2 ( k -  1 ) ~ / ( 2 N  + 1), 

where  1 < k < 2 N  + 1. Because N < 2n < 2N,  

2 n = 2 N + 1 - 7 7 ,  0 < r l < N .  (94) 

It fol lows that for 1 < k < 2 N  + 1, 

e -j2nOk = e -j(2N+l-n)Ok = e j~Ok, (95) 

where 0 < rl < N.  In this case, 

3 H c 3 p 2 e J 2 a n ( ~  1) s - l (2 jWn D ) - I s [ O 0  -n ] (96) 
Vn -- 4m n W2 - - . 

Notic ing  that 

1 [ 2jOgn -- ot~ 
(2jCOn - Dn) -1 = w2 _ 4o92 + ~ 2 _ 2~176 C con 2jO)n - ot~ ' 

(97) 

(co n + 2~On + otnj) j 
( 2 j O ~ n - D r l ) - l [ ~ ] = o ) Z ~ 4 ~ Z - ' ~ ' - 2 o t n ' - - - - W n j I ~ ] ,  (98) 

direct ion computa t ion  gives the same Vn as in (45) except that 2n is replaced by 
- r / w i t h  w_ n = con, ot_~ = ~ ,  and m _  n = m n. 
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